
© 2010 IBM Corporation© 2010 IBM Corporation

WOLA Architectural
Considerations
IBM Advanced Technical Skills (ATS)
A true partnership:

● WAS z/OS Support Team
● CICS Support Team
● IBM Software Group, WebSphere Application Server z/OS Development

Don Bagwell
dbagwell@us.ibm.com

22 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Other Sessions

33 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Agenda

Techdoc ...

● Overview of WOLA
● The "Inbound" vs. "Outbound" Concept
● CICS

● Outbound
● Inbound

● Non-CICS ... Batch, USS
● Outbound
● Inbound

Considerations we'll cover:
● Programming
● Security
● Transaction
● Performance

44 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA Techdoc Page

Overview ...

ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

The source for much of the information
you'll see in today's presentation

Many of the coding principles are spelled
out in this "Primer"

As well as other presentations and white papers on WOLA
And don't overlook the InfoCenter ... very good information as well

Design and
Planning Guide

Native APIs
COBOL Primer

55 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Overview of WOLA
Establishing a baseline of key terminology and concepts

66 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Basic Framework of WOLA
WOLA is at its heart a cross-memory byte array exchange mechanism:

Key enablers ...

CR

Node Agent

CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer Address
Space

z/OS Logical Partition
● Address space to address space
● Same LPAR only
● CICS, Batch, USS and ALCS
● Bi-directional
● The Daemon plays a key role in this
● Not "transparent" to application ... but

there are ways to minimize as we'll see
● WOLA itself does not care about the

layout, format or contents of the
exchange ... it's a byte array

● The parties at either end of the "pipe"
do care about layout, format and
contents

2GB Bar

Exchange
Control Blocks

Owned by Daemon

Program

Much more to discuss ...

77 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Key Pieces that Need to be in Place
Some basic environment setup work needs to be in place for things to work. This
chart summarizes ... Techdoc provides details.

Programming overview ...

CR SR

AppServer

CR

Node Agent

Node

CR SR

DMGR

CR

Daemon

JCA

CF

WAS_DAEMON_ONLY_enable_adapter = 1

_________ BBOACALL
_________ BBOACHAB
_________ BBOACLNK
_________ BBOACNTL
_________ BBOACPLT
_________ BBOA1URG

PDS

CR SR

AppServer

Environment variable to
enable function for the cell

API modules copied
out to PDS load library

WOLA JCA RAR file
installed into the node
with a CF created

olaInstall.sh run to create
symlinks from node to WOLA
files in SMP/E file system

Address
Space

88 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Programming Considerations Overview
More details coming later in presentation

Inbound / Outbound ...

JCA Resource
Adapter
ola.rar

Connection Factory

Servlet
or EJB EJB

COBOL, C/C++, High
Level Assembler, PL/I

WOLA Native APIs

Lower level WOLA
implementation

WOLA module library

Lower level JNI and
native code for WOLA

WAS z/OS Server
Address Space

External
Address Space

Java code in WAS container
access WOLA through supplied

JCA resource adapter

ConnectionSpec()
InteractionSpec()

Execute()
ExecuteHome()

13 APIs ... we'll see
what they are in a bit

STEPLIB or DFSRPL

CICS has an enhanced
implementation model

The programming is not difficult ... but it may be unfamiliar
Java interfaces with standard JCA methods

WOLA not transparent ... but that does not mean all programs are affected

99 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Inbound vs. Outbound
The starting point for any discussion of specifics

1010 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

A Registration into WAS Must Be in Place
Before any exchange across the WOLA "pipe" can be made, the WOLA pipe has to be
established. That's called "registering" ... and it's always done by the external program:

Who initiates? ...

CR

Node Agent

CR SR

AppServer

CR SR

DMGR

CR

Daemon

CR SR

AppServer Address
Space

z/OS Logical Partition

2GB Bar

Exchange
Control Blocks

Owned by Daemon

Program

Starting State
● No WOLA connection exists
● WAS application server is up and running
● WAS Daemon server stands ready to accept registration

request

Registration Phase
● The external address space program initiates an action

that results in the BBOA1REG API being executed
● That API names the cell, node and server short names.
● That API also provides information about the number of

connections to create in the connection pool
● That API also provides information on security and

transactionality
● The registration carries a name.

Result
● Daemon establishes control block structure above the

2GB line
● External address space connects into WAS "local

comm" structure
● WOLA pipe built between external AS and WAS

application server controller region

Now programs are ready to communicate across the WOLA registration

1111 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The Next Question is: Who Initiates the Exchange?
This is what differentiates "Inbound" vs. "Outbound" ... which side of the WOLA
connection initiates the exchange:

API picture ...

WAS z/OS Server

Java Program

Initiates Exchange

External AS

Program

Outbound
Relative to WAS z/OS

Inbound
Relative to WAS z/OS

WAS z/OS Server

Java Program

External AS

Program

Initiates Exchange

"I'm listening!"

"I'm listening!"

Drawing this distinction is important because it helps us focus on the APIs
that get used. There are 13 APIs ... not all need to be used.

It's also important because something has to be ready to receive the initiation
request coming over WOLA. Different ways to accomplish that.

When CICS ... transactionality and security are determined by this.

1212 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The APIs Organized Around Inbound / Outbound
Looks like this:

Shielding ...

BBOA1REG

BBOA1URG

BBOA1INV

BBOA1CNG

BBOA1CNR

BBOA1GET

BBOA1SRQ

BBOA1RCL

BBOA1RCA BBOA1RCS

BBOA1CNG

BBOA1SRX

BBOA1SRV

BBOA1SRP

BBOA1CNR

inbound and
outbound usage=

BBOA1CNRBBOA1GET

Basic

Advanced

Basic

Advanced

Inbound Outbound

And perhaps
no coding of
APIs at all
for outbound
if to CICS

1313 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Shielding Programs from WOLA-specific Coding
Here's a few preliminary comments, with details to come later in session ...

CICS ...

Outbound from WAS Inbound to WAS

ola.rar

WOLA Link
Server Task

Your
Program

EXEC CICS LINK

CICS

Your
Program

Batch

WOLA APIs

Java program writes to the CCI in the
supplied RAR. Standard interface, but it does
have to have knowledge of a few names used
by other side, and of course knowledge of
the data layout used in the exchange

Supplied Link Server task
shields your CICS programs
provided they can be invoked
with a LINK. Details coming.

A batch program that
receives an outbound call
needs to code to the APIs.

Java
Program

Servlet or EJB Stateless
Session Bean

ola.rar

Java
Program

The target for an inbound WOLA call must
be a stateless session bean that
implements Execute() and ExecuteHome()
using the WOLA classes

WOLA
Enabled

Your
Program

(or ISV)

ola.rar

Local Method Call

This may not be what you want to do or can do.
Solution is to build a "bridge" (or "shim") EJB that
simply turns and invokes the target EJB:

1414 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

CICS
Evaluating the key architectural considerations for WOLA and CICS

1515 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The CICS Inbound and Outbound Model, Summarized
Details will follow:

Link Server Task ...

TRUE
Task Related User Exit

BBO$
Link Server Task

BBO#
Link Invocation Task

Target CICS
Program

Source
Servlet or EJB

WAS z/OS

CICS

Outbound

TRUE
Task Related User Exit

Source CICS
Program

Target
EJB

WAS z/OS

CICS

Inbound

● TRUE provides the essential WOLA infrastructure inside
the CICS region.

● The BBO$/BBO# link server function implements the APIs
"under the covers" -- makes things simple to use

● No coding to the APIs needed
● The BBO# invocation task performs an EXEC CICS LINK

against the named target CICS program
● As long as target CICS program can be invoked with a

LINK there's no changes needed to it.

● TRUE provides the essential WOLA infrastructure inside
the CICS region.

● No BBO$/BBO# needed ... those are functions to receive a
call outbound from WAS

● Instead, the source CICS program writes to the WOLA APIs
● This is really just like batch inbound to WAS
● The target program in WAS must be a stateless session

bean that implements execute() and executeHome() using
the WOLA classes.

EXEC CICS LINK

WAS z/OS
native code

ola.rar WAS z/OS
native code

ola.rar

1616 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Focus in on the BBO$/BBO# Link Server Task (Outbound)
Here's the exchange flow and some of the details behind it:

Data layout ...

WOLA
Boundary

BBOC START_TRUE
"BBOC" is a WOLA control program. The TRUE may be
started manually or at CICS initialization with PLTPI

BBOC START_SRVR
This starts the BBO$ link server task, as well as having that
task perform a registration. Parameters include the cell,
node and server short along with a registration name

Registration
Control Block

WAS Daemon and application server must
be up and running

Java program uses ConnectionSpec()
and names the registration name as its
connection point

Java program uses InteractionSpec()
and names the CICS program as the
"service name" of the target. Data passed
as byte array representation of
COMMAREA or Channel/Container

BBO$ link server task receives request and launches an
instance of the BBO# invocation task

BBO# invocation task issues an EXEC CICS LINK against
the CICS program named as the "service"

CICS program provides returnJava program receives the response
provided it from the underlying WOLA
JCA resource adapter

BBOC STOP_SRVR
This unregisters and stops the BBO$ link server task

BBOC STOP_TRUE
Stops the WOLA TRUE

No coding to the native APIs, no modifications to the target CICS program
(provided it can be invoked with an EXEC CICS LINK)

1717 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

The Java Program needs to understand the data layout for CICS
WOLA itself sees the data as a byte array. It has no awareness of the data format.

Byte Array

COBOL Copybook

Rational
Application
Developer

TRUE
Task Related User Exit

BBO$
Link Server Task

BBO#
Link Invocation Task

Target CICS
Program

EXEC CICS LINK

COMMAREA or
containerWAS z/OS

CICS

Wizard

Servlet or
EJB

WAS z/OS
native code

ola.rar

But the two application partners in the exchange do have to know the data format
There's a COPYBOOK import WIZARD in RAD that assists with this

YouTube demonstration -- search on WASOLA1
IBM Redbook RedPiece -- redp4550

BBOC START_SRVR ...

1818 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

BBOC START_SRVR and the Parameter Flags
This starts the link server task and initiates a registration into the named Daemon
space. The parameters supplied influence things like security and performance:

SEC and TXN ...

RGN=<name> The registration name. Java-side needs to know this for ConnectionSpec()
DGN=<name> The cell short name

NDN=<name> The node short name

SVC=<name> The service name(s) supported ... asterisk (*) means any

SVN=<name> The server short name

MNC=<minimum_number_of_connections> The minimum connections in the connection pool

MXC=<maximum_number_of_connections> The maximum connections in the connection pool

SEC=<yes|no> Determines whether CICS will consider the asserted ID coming from WAS

TXN=<yes|no> For inbound to WAS this determines if transaction propagation takes place

STX=<CICS_link_server_transaction_ID> Overrides default value of BBO$

LTX=<CICS_link_server_invocation_ID> Overrides default value of BBO#

TRC=0|1|2 Trace level

TDQ=<tdqname> Transient data queue for trace data

REU=<yes|no> If SEC=NO, then REU=YES means BBO# invocation tasks re-used

InfoCenter search string: rdat_cics

BBOC START_SRVR <parameters>

1919 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Outbound -- Security and Transactionality
Influenced by the BBOC parameters SEC and TXN

Bypassing link server ...

Transaction
TXN=<yes|no>

At the present time WOLA
supports "sync on return" only

for WAS  CICS outbound
initiated flows.

That limitation is imposed on
WOLA by the design of the

CICS Task Related User Exit.

* * *

For CICS  WAS inbound
initiated flows TXN=YES

provides propagation of TX.
WAS then participates in the
CICS global transaction 2PC

processing.

Security
SEC=<yes|no>

SEC=YES

WAS

Asserts the identity
on the WAS thread.

Either the servant ID
or user identity
depending how you
have WAS configured

BBO$

SAF

ID BBO#
ID

CICS

LINK PGM
ID

The ID BBO$ runs under
needs SURROGATE to
start the BBO# task and
pass the ID

BBO$ will check
with SAF every

invocation

A new instance of BBO#
invocation task started
for every invocation.
REU=Y not permitted

SEC=NO
● No identity asserted

For same-LPAR high-performance applications that may be acceptable

● No SAF checking
Acceptable if same-LPAR a trusted domain. Aids performance.

● Allows REU=Y ... instances of BBO# link
invocation tasks maintained and re-used
Performance

2020 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Outbound -- Maximum Performance
If you're looking to squeeze every drop of throughput ...

Inbound ...

Byte Array TRUE
Task Related User Exit

BBO$
Link Server Task

BBO#
Link Invocation TaskTarget CICS

Program

WAS z/OS CICS

Servlet or
EJB

WAS z/OS
native code

ola.rar WOLA APIs

1

2

3
4

1. Do not use BBO$/BBO#
BBO$/BBO# provide ease-of-use and flexibility,
but at the cost of some overhead. If maximum
throughput is needed, do not start the link
server tasks

2. Still need TRUE
This is what provides the essential WOLA
infrasturcture support inside of CICS. Need this
in any event.

3. Code program directly to the WOLA APIs
● Register using BBOA1REG API
● SEC=N to minimize SAF checking
● Provide a "service name" on the registration
● "Host a Service" using BBOA1SRV or primitive (more in a bit)
● Multi-thread and async operatons (more in a bit)

4. Java program similar to before:
● Still use ConnectionSpec() and InteractionSpec()
● Name the "service" the CICS program used on registration
● Multi-thread and use concurrent connections (more in a bit)

API coding considerations just like "batch" ... we'll cover details in that section

2121 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Inbound -- Need to Code to the APIs; BBO$/BBO# Not Used
Inbound implies CICS program is initiating the exchange:

CICS summary ...

Byte Array TRUE
Task Related User Exit

BBO$
Link Server Task

BBO#
Link Invocation TaskSource CICS

Program

WAS z/OS CICS

EJB

WAS z/OS
native code

ola.rar WOLA APIs

1

2

3
4

1. Do not use BBO$/BBO#
The link server task is an outbound construct.
For inbound to WAS the program initiates using
one of the WOLA APIs.

2. Still need TRUE
This is what provides the essential WOLA
infrasturcture support inside of CICS. Need this
in any event.

3. Code program directly to the WOLA APIs
● Register using BBOA1REG API

● SEC=Y ... CICS region ID or application user ID
● Set ola_cicsuser_identity_propagate=1 WAS variable
● TXN=Y ... WAS participates in CICS global tran, 2PC with RRS

● Using BBOA1INV or one the primitives (more in a bit)
● "Service name" is the EJB home interface JDNI

4. Java program requirements
● Must be a stateless session bean
● Execute() and ExecuteHome() implemented with WOLA classes

API coding like "batch" ... we'll cover details in that section

2222 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

CICS Support -- Summary

Non-CICS ...

WOLA TRUE installed/enabled Required Required

BBO$/BBO# Link Server task used Optional
(ease of use vs.
performance)

Not Applicable

Java Programming Servlet or EJB
Code to JCA methods

of WOLA adapter

Stateless session bean.
Execute() and ExecuteHome()
implemented with WOLA classes

Native API Programming If using link server task, then
none. Otherwise, program must
"host a service" (BBOA1SRV or

primitive combination)

If using link server task, then
none. Otherwise, program must
"host a service" (BBOA1SRV or

primitive combination)

Registration Required. Use BBOC or
use BBOA1REG

Required. Use BBOC or
use BBOA1REG

Security If SEC=Y, then WAS asserts ID of
execution thread

If SEC=Y, then CICS asserts
region ID or application user

Transaction Sync-on-return only If TXN=Y then 2PC

Outbound Inbound

2323 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Non-CICS ... Batch/USS
With a particular focus on the APIs and key coding constructs

2424 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Overview of the Key Considerations
There's a handful of things to keep in mind:

API categorization ...

Byte Array

Batch
Program

WAS z/OS Batch

Java

WAS z/OS
native code

ola.rar

WOLA Modules

Java issues
comparable to
CICS; that is,
servlet or EJB

outbound,
stateless EJB

inbound.

The WAS/WOLA
infrastructure

pieces need to be
in place

The WOLA modules
must be in a PDS
accessible by the

batch program

The batch program
must perform the

registration -- inbound
or outbound

Same essential
concept of "inbound"

and "outbound" -- who
initiates the exchange

If the programs can multi-
thread then potential exists
for parallel connections in

use across WOLA

Do you want the
program to operate
synchronously or
asynchronously

These two influence which APIs will be used.
The key objective is performance.

2525 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Reminder of Native API Categorization
We saw this earlier in the presentation:

Simplest model ...

We saw that registering is a key first step in all
cases. And it's always done by the external

address space. Perhaps "hidden" with a BBOC
START_SRVR command, but it still must take place.

We emphasized the key concept
of "inbound" vs. "outbound"

processing. The APIs you use in
the external address space are

determined by this.

We saw how with outbound
CICS it's possible to avoid

coding APIs altogether. That's
because the supplied link server

task hides all that from you.

Now we'll explore the APIs in a bit deeper detail, and see about
this "basic" vs. "advanced" concept inherent in the APIs.

2626 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

A Starting "Comfort" Chart
An inbound program might be as simple as this:

Synchronous / Asynchronous ...

WOLA

WAS BatchBBOA1REG (parms)

BBOA1URG (parms)

BBOA1INV (parms)

More?

Start

End

No

Yes

Simple and Easy

Effective ... very fast

But ...

Inbound ... outbound is a bit more involved
Some of the connection management is the batch
program's responsibility

Synchronous ... which means batch thread
waits for WAS to return

Very easy to under-utilize the WOLA mechanism if
there's a lot of synchronous waiting on in-server
processing to complete

2727 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Synchronous vs. Asynchronous
The APIs allow both. In general, synchronous is simpler. But asynchronous allows for
potentially greater throughput:

Connections ...

Synchronous Asynchronous

WOLA

WAS Batch
1

2

3

1. Batch program calls WAS program

2. WAS program processes request. Program control is
held from batch processing thread until request returns.

3. WAS program responds

WOLA

WAS Batch
1

2 3

4

1. Batch program calls WAS program. Program control is
returned to batch thread immediately.

2. WAS program processes request.

3. Batch program free to do other work or employ other
WOLA connections (more on connections next chart)

4. WAS program responds at some future point.

The "basic" APIs operate synchronously. It's a simpler model.

The "advanced" APIs (sometimes called "primitives") are finer-grained subsets of the
basics which allow asynchronous activity. But that implies your program goes back

at some point and checks to see if a response has been received.

2828 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Connections within the Registration Pool
Two of the parameters on the BBOA1REG registration API determine the minimum and
maximum connections provided in the registration:

Primitives ...InfoCenter search string: cdat_olaapis

Cell, node and server SHORT

The name on this registration
(multiple registrations, same cell or

even same server, permitted)

Security propagation,
transactionality and tracing

(See InfoCenter)minconn = 1
maxconn = 5
allocated = 3
in-use = 1

Registration Control Block

WOLA

WAS Batch
(or CICS)

● minconn is the number of connections allocated at registration
● maxconn is the limit of allocations on this registration
● in this example 3 connections have been allocated
● one connection is currently in use
● two connections are allocated and available
● two more could be allocated if needed
● RC=8, RSN=10 if maximum connections occupied

2929 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Explore BBOA1INV vs. Primitives to do Same Function
This information is from the documents in the WP101490 Techdoc:

Performance ...

WOLA External ASWAS Server WOLA External ASWAS Server

Get Connection

Send Request

Get Response

Release Connection

"Basic" "Advanced"
(or "primitives")

Exact same
function

Okay ... but what's the value?
Finer control allows you to do finer things:

● BBOA1SRQ allows for synchronous or asynchronous
● Get a connection and re-use it many times
● Get a pool of connections and multi-thread over it These sorts of things get to the

question of performance ...

3030 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

WOLA Performance ... Heavily Generalized
Two key conceptual points to be made:

Outbound ...

Greater Performance:
● Multi-threaded
● Concurrent multi-connections
● Tune user threads to connections
● Hold and re-use connections
● Asynchronous
● Large messages
● No security propagation
● No transactional propagation
● If outbound CICS, bypass CICS

link server task

Lesser Performance:
● Single thread
● Synchronous
● Small, chatty messages
● Security checking
● Transactional
● CICS Link Server Task

WOLA

WAS CICS

Small number
of users

HTTP or Web
Services

High in-CICS
processing time

Finer Control = Performance
(if done properly) Utilize Full Capacity

Here's an example of under-utilizing WOLA:

A user in this example may not see much benefit
from WOLA vs. another connector technology.

But that's because the WOLA-time is such a very
small percentage of total time.

The greater the utilization of WOLA capacity, the
greater the relative benefit you'll see.

InfoCenter search string: cdat_perfconsid
Also WP101490 Techdoc

Trade-off between simplicity and ease of
use and performance through more

sophisticated usage of programming

2 secs

3131 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Outbound to Batch (or CICS with bypass of Link Server Task)
The issue here is that you must have the external program in a listen state. The
BBOA1SRV API is for that purpose -- "hosts a service":

Batch summary ...

Recall the CICS
outbound scenario

The BBO$/BBO# link
server task function
was serving as the
"listener" for calls

coming from WAS. It
used the API function

"under the covers"

WOLA External ASWAS Server

Host a Service
Synchronous

Send Response

Unregister

Release Connection

Register

Program control returned along with
length of response and connection handle

If asynchronous is desired, then BBOA1RCA with
BBOA1GET ... allows your batch program to go do other

work while WAS processes the inbound request.
The WP101490 "Primer" illustrates all of this in detail

3232 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Batch Summary

Overall summary ...

Java Programming Servlet or EJB
Code to JCA methods

of WOLA adapter

Stateless session bean.
Execute() and ExecuteHome()
implemented with WOLA classes

Native API Programming Need to "host a service" using
BBOA1SRV or the primitives.

BBOA1INV or the primitives

Registration Required. Use BBOC or
use BBOA1REG

Required. Use BBOC or
use BBOA1REG

Security No security assertion outbound
from WAS to batch; with CICS

yes: the same model as with link
the BBO$/BBO# link server task

If batch then the ID of the job; if
CICS, then region or application

thread userid.

Transaction None for batch; with CICS then
same as before: sync-on-return

None for batch; for CICS
then same as before: 2PC

Outbound Inbound

Reminder: WP101490 Techdoc!
That has quick-search tags for InfoCenter

3333 © 2010 IBM Corporation© 2010 IBM CorporationIBM Advanced Technical SkillsIBM Advanced Technical Skills

Overall Summary
Functionality

● Cross-memory single-LPAR byte area low-overhead exchange mechanism
● Inbound and outbound; CICS, Batch, USS and ALCS (watch this space for future cool stuff J)

Applicability
● Very well suited for inbound to WAS where other solutions may impose unacceptable overhead
● Excellent solution for high-speed batch interchanges
● Outbound to CICS for very large message sizes and where particular attributes of CTG not indicated

Programming
● Non-Java side: C/C++, COBOL, High-Level Assembler, PL/I
● Native APIs used as illustrated earlier and in WP101490 Techdoc
● Java side: code to CCI methods of supplied JCA adapter

Security
● Security propagation inbound and outbound is possible, depending on the case (see summaries)
● Region ID or Thread ID, inbound/outbound with CICS

Transaction
● Two-phase commit inbound to WAS from CICS using RRS as syncpoint coordinator
● One-phase (sync-on-return) outbound WAS to CICS due to present limitation in TRUE architecture

Performance
● "Out of the box" basics provides very good performance
● Potential exists to tune even further using programming primitives as illustrated earlier
● WOLA will show greater and greater relative performance to other technologies the more you utilize the

capacity of the WOLA connections

